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 Lecture 8.   Frequency stability criteria 

Frequency criteria allow us to judge about system stability by its frequency 

characteristics. There are two frequency criteria we will consider later on: Mikhailov 

and Nyquist. Generalized frequency characteristic is obtained from transfer function 
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Thus, characteristic polynomial  sQ2 or  jQ2 defines properties of dynamic 

system. 

 

8.1    Mikhailov’s stability criterion 

 

In 1938 Russian scientist A. V. Mikhailov formulated the following stability 

criterion for linear systems of any order. 

For stable closed-loop system of any order it is necessary and sufficient, that 

hodograph curve of vector  jD , which defines Mikhailov curve, meets the 

following requirements: 

a) starts at positive real axis; 

b) sequentially passes “n” quadrants; 

c) have an angle of rotation 
2


 n  (frequency changes from 0 to infinity); 

d) goes to infinity in nth quadrant where “n”  is the order of characteristic 

equation. 

 
 

 

Fig. 3.5a. Hodograph curve of a stable 

ACS 

Fig. 3.5b. Hodograph curve of an 

unstable ACS 

 

Above mentioned Mikhailov’s curve D(jω) is a characteristic polynomial of a 

closed-loop system. That means if we have  
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then for a closed-loop system it will be  
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(taking into account the fact, that unit negative feedback is unit, i.e.  WFb(s)=1). 

Hence,       jQjQjD 21   . 

 

Definition of Mikhailov’s curve is divided into real and imaginary parts:  

 

          jDjDjjYXjD ImRe  . 

 

From definition of such form we construct Mikhailov’s hodograph curve 

changing ω from 0 to infinity. Obtained graph allows us to judge about stability of 

the closed-loop system. It is necessary to note, that since hodograph sequentially 

passes all n quadrants, roots of equations   0X  and   0Y must alternate 

starting from real axis: n  ...0 321 , where ω changes from 0 to 

infinity. 

When we faced with algebraic stability criterions, the following three stability 

thresholds were found: 

1) zero root or aperiodic stability threshold 0na ; 

2) 01  n  corresponding to the oscillating stability threshold; 

3) infinite root threshold. 

Existence of stability thresholds of all three types can be determined using 

Mikhailov’s curve in the following way: 

1) Stability threshold of the first type (zero root) lead to absence of 

free term in characteristic polynomial 0na , so the curve starts at the origin 

(Fig 3.6a). 

 
 

Fig. 3.6a.  Stability threshold of the first type 

 

2) Stability threshold of the second type (oscillating stability 

threshold) means that   00 jD , hence   0X ,   0Y  . This in turn 

means that point 
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 of the curve lies at the origin (fig 3.6b). 
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Fig. 3.6b.  Stability threshold of the 

second type 

Fig. 3.6c.  Stability threshold of the third 

type 

 

Stability threshold of the third type (infinite root) is characterized by the 

flipped end of the curve in the III quarter (fig. 3.6c). 

 

 8.2   Nyquist’s stability criterion 

 

American scientist H. Nyquist formulated another type of criterion, the 

frequency stability criterion. In this criterion we can judge about a closed-loop system 

stability using gain-phase frequency characteristic (GPhFC) of the open-loop system. 

This is a big advantage of the method. 

Criterion itself: if the point with coordinates  0,1 j  in complex plane is not 

contained within an interior of the GPhFC curve of an open-loop stable dynamic 

system, then the corresponding closed-loop system is stable (fig. 3.3a - 3.7c). 

 
 

Fig. 3.7a.  GPhFC of an open system Fig. 3.7b.  Hodograph of a stable system 

  

This is a necessary and sufficient condition for stability of dynamic system with 

unit negative feedback. 

So, now we have the criterion defined for systems with degenerative (unit 

negative) feedback. But where the point  0,1 j  came from? As a rule, in 

mathematics “special” points are points of discontinuity at 0 or infinity, and here we 

have not usual  0,1 j . A question to inquisitive reader: why coordinates of this 

special point are such ones? 
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Fig. 3.7c. Hodograph of a board stability system 

 

Normative Nyquist’s criteria reflect the situation when feed backward 

connection is not unit (one) but has gain coefficient    0k . 

Let W(s) be a transmission function of the open-loop system (fig 3.8). 

 

 
 

Fig. 3.8. The scheme of the system 

 

Transmission function of the closed-loop system is  
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Normative Nyquist’s criterion is characterized by definition of a special point      
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Fig. 3.9а. Open system GPhFC Fig. 3.9b. System hodograph 

 

When feed backward connection coefficient 0k  decreases the system stability 

increases and vice versa. 

Normative Nyquist’s criterion interpretation is very useful.  For systems of the 

1st and 2nd order 0k  can be of any value. But for a system of the 3d order there is 

always critical amplification coefficient. All real systems can be described by 

differential equations. These are as a rule higher than third-order equations. As a 

result all real systems have critical amplification coefficients.   

 

 

0 

 

 

(-1, j0) 

W(s) 

k0 

  

 

 

0 

 
 

 

 

 

0 

 

  



5 
 

Nyquist’s criterion was formulated for a stable open-loop system. But if an 

open-loop is unstable is it possible to make the system stable by means of feedback 

connection? Certainly it is possible.   

In the case of unstable open-loop system for stability of closed-loop system it 

is necessary and enough to have hodograph (GPhFC) that embraces a special point k 

times.  Here “k”  is a number of roots in the right half-plane for open system .   

 

The main conclusions of  Nyquist’s criteria interpretation:  

–  on GPhFC of an open system it is possible to judge about stability of an 

closed-loop system; 

–  for closed-loop system stability it is necessary to decrease feedback 

connection coefficient 0k . 

 

8.3   Comparison of stability criteria 

If ACS mathematical description was done (given) in terms “input-output”, to 

check the system stability one can use criteria of Hurwitz, Mikhailov and Nyquist. If 

ACS mathematical description is done (given) in space states, to check system 

stability A.M. Lyapunov’s theorems are used.   

If the system order is 4n  , it is advisable to use Hurwitz’s criterion. If the 

system order is 4n   Routh’s criterion should be used. Mikhailov’s stability 

criterion is advisable for complicated multilevel systems. 

Nyquist’s criterion fits for complicated systems with delay, for those described 

by means of analytical functions, and for the cases when links characteristics are 

given by experiments.    

Lyapunov’s theory is used when systems descriptions are given in space states.  

All of the described above stability criteria give possibility to conclude if the system 

is stable or not at the definite given parameters.   

But sometimes it is necessary to solve the problem when one or two system 

parameters can change in definite limits and you should choose their optimal values 

that give the best dynamic factors of the ACS.    

It turned out that there is a possibility to trace the impact of some parameters 

on the system stability. Some special methods were worked out and they will be 

considered below. 

 

 

  

 


